Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 2150-2170, 2022.
Article in English | WPRIM | ID: wpr-929386

ABSTRACT

Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.

2.
Biol. Res ; 51: 3, 2018. tab, graf
Article in English | LILACS | ID: biblio-888429

ABSTRACT

Abstract Background The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. Results We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. Conclusion We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells.


Subject(s)
Animals , Male , Mice , Stem Cells/drug effects , Sulfones/pharmacology , Triazoles/pharmacology , Tankyrases/antagonists & inhibitors , Receptors, G-Protein-Coupled/drug effects , Cell Proliferation/drug effects , Duodenum/drug effects , Intestine, Small/drug effects , Sulfones/pharmacokinetics , Triazoles/pharmacokinetics , Immunohistochemistry , Mice, Transgenic , Fluorescent Antibody Technique , Microscopy, Confocal , Tankyrases/pharmacology , Tankyrases/pharmacokinetics , Receptors, G-Protein-Coupled/genetics , Duodenum/cytology
3.
Rev. colomb. reumatol ; 23(4): 259-265, oct.-dic. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-960223

ABSTRACT

El lupus eritematoso sistémico es el prototipo de las enfermedades autoinmunes no órgano-específicas, con un curso fluctuante entre periodos de remisión y crisis. La complejidad de sus mecanismos fisiopatológicos mantiene la necesidad de desarrollar nuevos tópicos de investigación que faciliten su entendimiento y generen potenciales blancos terapéuticos. La vía de señalización Wnt y su principal inhibidor la protema Dickkopf-1 tienen un rol trascendental en fenómenos biológicos como la homeostasis ósea. Sin embargo, estudios recientes en lupus eritematoso sistémico han permitido reconocer otros procesos extraóseos regulados por la proteína Dickkopf-1. Entre ellos: la preservación de la integridad de las membranas glomerulares a nivel renal, reversión de rasgos de senescencia de células mesenquimales de interés en la optimización de los planes de trasplante como medida terapéutica; y la homeostasis articular. Alrededor de estos resultados han de suscitarse nuevas investigaciones sobre la proteína Dickkopf-1 y lupus eritematoso sistémico, que consoliden la información obtenida dado el gran potencial clínico y terapéutico que implica.


Systemic lupus erythematosus is the prototype of non-organ specific autoimmune diseases, with a fluctuating course between remission and crisis. The complexity of pathophysiological mechanisms opens up the possibility to develop multiple research topics to facilitate their understanding and generate potential therapeutic targets. The Wnt signalling pathway and its main inhibitor, Dickkopf-1 protein, have a major role in biological phenomena, such as bone homeostasis. However, recent studies have enabled other extra-osseous processes regulated by Dickkopf-1 to be recognised. These include: preserving the integrity of kidney glomerular membranes, senescence reversal characteristics of mesenchymal cells of interest in optimising transplantation plans as a therapeutic measure, and joint homeostasis. Some of these results have led to further research into Dickkopf-1 and systemic lupus erythematosus, in order to consolidate the information obtained given the great clinical and therapeutic potential involved.


Subject(s)
Humans , Autoimmune Diseases , Lupus Erythematosus, Systemic
4.
Journal of Leukemia & Lymphoma ; (12): 593-595, 2010.
Article in Chinese | WPRIM | ID: wpr-472211

ABSTRACT

Objective To investigate the influence of β-catenin gene deletion on Stat-5α phosphorylation in bcr-abl induced leukemia cells. Methods The established conditonal hematopoitic β-catenin knockout mice were used to isolate bone marrow cells. Exogenous bcr-abl fusion gene was transduced to these bone marrow cells by retroviral infection with intent to transfom them to leukemia cells.Immunofluorescence was performed to detect the phosphorylation status of Stat-5α in both β-catenin deletion cells and control cells. bcr-abl transcription and protein levels were evaluated with real-time PCR and western blotting. Results Phosphorylation of Stat-5α was reduced significantly in β-catenin deletion leukemia cells on comparison with control cells despite that total Stat-5α protein showed no obvious changes. Total tyrosine phosphorylation and bcr-abl protein expression were reduced in bcr-abl induced β-catenin deletion CML cells,on the contrary, both of the reduction were not seen in bcr-abl induced β-catenin deletion ALL cells.Conclusion Loss of β-catenin inhibits both Stat-5α phosphorylationin and bcr-abl expression in bcr-abl induced leukemia cells.

SELECTION OF CITATIONS
SEARCH DETAIL